Get Domain & Hosting at one place with Namecheap!

Need Help?

Connect with an Expert today!

Call Us Whatsapp Us Email Us

What Electrical and Electronics Engineers Do

Blog

Electrical engineers design, develop, test, and supervise the manufacture of electrical equipment, such as electric motors, radar and navigation systems, communications systems, or power generation equipment.

Electrical engineers design, develop, test, and supervise the manufacture of electrical equipment, such as electric motors, radar and navigation systems, communications systems, or power generation equipment. Electrical engineers also design the electrical systems of automobiles and aircraft.

Electronics engineers design and develop electronic equipment, including broadcast and communications systems, such as portable music players and Global Positioning System (GPS) devices. Many also work in areas closely related to computer hardware.

Duties

Electrical engineers typically do the following:

  • Design new ways to use electrical power to develop or improve products
  • Perform detailed calculations to develop manufacturing, construction, and installation standards and specifications
  • Direct the manufacture, installation, and testing of electrical equipment to ensure that products meet specifications and codes
  • Investigate complaints from customers or the public, evaluate problems, and recommend solutions
  • Work with project managers on production efforts to ensure that projects are completed satisfactorily, on time, and within budget

Electronics engineers typically do the following:

  • Design electronic components, software, products, or systems for commercial, industrial, medical, military, or scientific applications
  • Analyze customer needs and determine the requirements, capacity, and cost for developing an electrical system plan
  • Develop maintenance and testing procedures for electronic components and equipment
  • Evaluate systems and recommend design modifications or equipment repair
  • Inspect electronic equipment, instruments, and systems to make sure they meet safety standards and applicable regulations
  • Plan and develop applications and modifications for electronic properties used in parts and systems in order to improve technical performance

Electronics engineers who work for the federal government research, develop, and evaluate electronic devices used in a variety of areas, such as aviation, computing, transportation, and manufacturing. They work on federal electronic devices and systems, including satellites, flight systems, radar and sonar systems, and communications systems.

The work of electrical engineers and electronics engineers is often similar. Both use engineering and design software and equipment to do engineering tasks. Both types of engineers also must work with other engineers to discuss existing products and possibilities for engineering projects.

Engineers whose work is related exclusively to computer hardware are considered computer hardware engineers.

Work Environment

Electrical and electronics engineers
Electrical and electronic engineers work in various industries, including engineering services, research and development, and manufacturing.

Electrical engineers held about 189,100 jobs in 2023. The largest employers of electrical engineers were as follows:

Engineering services20%
Electric power generation, transmission and distribution10
Navigational, measuring, electromedical, and control instruments manufacturing6
Aerospace product and parts manufacturing5
Research and development in the physical, engineering, and life sciences5

Electronics engineers, except computer held about 98,700 jobs in 2023. The largest employers of electronics engineers, except computer were as follows:

Telecommunications19%
Federal government, excluding postal service15
Semiconductor and other electronic component manufacturing12
Engineering services8
Navigational, measuring, electromedical, and control instruments manufacturing5

Electrical and electronics engineers generally work indoors in offices. However, they may visit sites to observe a problem or a piece of complex equipment.

Work Schedules

Most electrical and electronics engineers work full time.

How to Become an Electrical or Electronics Engineer

Electrical and electronics engineers
Becoming an electrical or electronics engineer involves the study of math and engineering.

Electrical and electronics engineers must have a bachelor’s degree. Employers also value practical experience, such as internships or participation in cooperative engineering programs, in which students earn academic credit for structured work experience.

Education

High school students interested in studying electrical or electronics engineering benefit from taking courses in physics and math, including algebra, trigonometry, and calculus. Courses in drafting are also helpful, because electrical and electronics engineers often are required to prepare technical drawings.

Electrical and electronics engineers typically need a bachelor's degree in electrical engineering, electronics engineering, or a related engineering field. Programs include classroom, laboratory, and field studies. Courses include digital systems design, differential equations, and electrical circuit theory. Programs in electrical engineering, electronics engineering, or electrical engineering technology should be accredited by ABET.

Some colleges and universities offer cooperative programs in which students gain practical experience while completing their education. Cooperative programs combine classroom study with practical work. Internships provide similar experience and are growing in number.

At some universities, students can enroll in a 5-year program that leads to both a bachelor’s degree and a master’s degree. A graduate degree allows an engineer to work as an instructor at some universities, or in research and development.

Important Qualities

Concentration. Electrical and electronics engineers design and develop complex electrical systems and electronic components and products. They must keep track of multiple design elements and technical characteristics when performing these tasks.

Initiative. Electrical and electronics engineers must apply their knowledge to new tasks in every project they undertake. In addition, they must engage in continuing education to keep up with changes in technology.

Interpersonal skills. Electrical and electronics engineers must work with others during the manufacturing process to ensure that their plans are implemented correctly. This collaboration includes monitoring technicians and devising remedies to problems as they arise.

Math skills. Electrical and electronics engineers must use the principles of calculus and other advanced math in order to analyze, design, and troubleshoot equipment.

Speaking skills. Electrical and electronics engineers work closely with other engineers and technicians. They must be able to explain their designs and reasoning clearly and to relay instructions during product development and production. They also may need to explain complex issues to customers who have little or no technical expertise.

Writing skills. Electrical and electronics engineers develop technical publications related to equipment they develop, including maintenance manuals, operation manuals, parts lists, product proposals, and design methods documents.

Licenses, Certifications, and Registrations

Licensure is not required for entry-level positions as electrical and electronics engineers. A Professional Engineering (PE) license, which allows for higher levels of leadership and independence, can be acquired later in one’s career. Licensed engineers are called professional engineers (PEs). A PE can oversee the work of other engineers, sign off on projects, and provide services directly to the public. State licensure generally requires

  • A degree from an ABET-accredited engineering program
  • A passing score on the Fundamentals of Engineering (FE) exam
  • Relevant work experience, typically at least 4 years
  • A passing score on the Professional Engineering (PE) exam

The initial FE exam can be taken after earning a bachelor’s degree. Engineers who pass this exam commonly are called engineers in training (EITs) or engineer interns (EIs). After meeting work experience requirements, EITs and EIs can take the second exam, called the Principles and Practice of Engineering (PE).

Each state issues its own licenses. Most states recognize licensure from other states, as long as the licensing state’s requirements meet or exceed their own licensure requirements. Several states require continuing education for engineers to keep their licenses.

Advancement

Electrical and electronic engineers may advance to supervisory positions in which they lead a team of engineers and technicians. Some may move to management positions, working as engineering or program managers. Preparation for managerial positions usually requires working under the guidance of a more experienced engineer. For more information, see the profile on architectural and engineering managers.

For sales work, an engineering background enables engineers to discuss a product's technical aspects and assist in product planning and use. For more information, see the profile on sales engineers.

Pay

Electrical and Electronics Engineers

Median annual wages, May 2023

Electronics engineers, except computer

$119,200

 
Electrical and electronics engineers

$109,010

 
Electrical engineers

$106,950

 
Engineers

$102,660

 
Total, all occupations

$48,060

 
 

The median annual wage for electrical engineers was $106,950 in May 2023. The median wage is the wage at which half the workers in an occupation earned more than that amount and half earned less. The lowest 10 percent earned less than $69,320, and the highest 10 percent earned more than $172,050.

The median annual wage for electronics engineers, except computer was $119,200 in May 2023. The lowest 10 percent earned less than $76,700, and the highest 10 percent earned more than $179,690.

In May 2023, the median annual wages for electrical engineers in the top industries in which they worked were as follows:

Research and development in the physical, engineering, and life sciences$133,040
Aerospace product and parts manufacturing130,870
Navigational, measuring, electromedical, and control instruments manufacturing117,510
Electric power generation, transmission and distribution109,370
Engineering services101,440

In May 2023, the median annual wages for electronics engineers, except computer in the top industries in which they worked were as follows:

Semiconductor and other electronic component manufacturing$144,960
Federal government, excluding postal service126,610
Navigational, measuring, electromedical, and control instruments manufacturing125,930
Engineering services109,650
Telecommunications105,100

Most electrical and electronics engineers work full time.

Job Outlook

Electrical and Electronics Engineers

Percent change in employment, projected 2023-33

Electrical engineers

9%

 
Engineers

9%

 
Electrical and electronics engineers

9%

 
Electronics engineers, except computer

9%

 
Total, all occupations

4%

 
 

Overall employment of electrical and electronics engineers is projected to grow 9 percent from 2023 to 2033, much faster than the average for all occupations.

About 19,000 openings for electrical and electronics engineers are projected each year, on average, over the decade. Many of those openings are expected to result from the need to replace workers who transfer to different occupations or exit the labor force, such as to retire.

Employment

Employment growth is expected as companies increasingly utilize the expertise of engineers for projects involving electrical and electronic devices, systems, and infrastructure. These engineers are expected to have key roles in developing sophisticated consumer electronics, solar arrays, semiconductors, and communications technologies.

Employment projections data for electrical and electronics engineers, 2023-33
Occupational TitleSOC CodeEmployment, 2023Projected Employment, 2033Change, 2023-33Employment by Industry
PercentNumeric

SOURCE: U.S. Bureau of Labor Statistics, Employment Projections program

Electrical and electronics engineers

17-2070287,800313,900926,200Get data

Electrical engineers

17-2071189,100206,300917,200Get data

Electronics engineers, except computer

17-207298,700107,60098,900Get data

Similar Occupations

This table shows a list of occupations with job duties that are similar to those of electrical and electronics engineers.


HAMNIC Solutions is here to support your graduate journey. Our professional writing and editing expertise helps you manage your academic workload, reduce stress, and focus on well-being for a balanced academic and personal life. Visit HAMNIC Solutions to learn how we can make your student life easier and healthier, enabling you to achieve your academic ambitions without sacrificing a balanced lifestyle.

Share Blog:

Comments


There are no comments yet.

Enter new comment


Your message is required.